- 追加された行はこのように表示されます。
- 削除された行は
このように表示されます。
!ASPLOS五日目
本会議三日目.
!Machine Learning I
::PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference
* memristive crossbar
** 2-6 bits per cell vs 1-bit or CMOS(SRAM) = 6x
** cell area is 4F^2 vs 120F^2 for CMS(SRAM) = 30x
** Analog MVM 1.34pJ/op
* ref. RENO DAC15, PRIME ISCA16
* Domain-specific ISA
** large register address space to support memoristive crossbar
** vector width keeps instruction memory low in spatial architecture
* Hybrid core
** hybrid memrisitive and CMOS
* compiler optimization
** graph partitioning
** MVM instruction consume high latency
* inference energy: skylake, Pascalと比べて削減.
* PUMA compiler https://github.com/illinois-impact/puma-compiler
* PUMA simulator https://github.com/Aayush-Ankit/dpe_emulate
::FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture
* isues
** ReRAMなシステムではDACとADCがでかい.(Logical ViewだとReRAMでかいけど)
** communication bound
** reliability
** flexibity
*** ReRAM-based VMM(fast), Digital-based others(relatively slow)
* refs. bridge tha gap between neural netwoks and ..., ASPLOS'18
* FPSA; ReRAM-based processing element
** reduce digital circuit, spiking schema
** fully parallel
* routing = iland-style, like FPGA (ref. mrFPGA)
* system stack: neural synthesizer -> spatial-to-temporal mapper -> place & route
::Bit-Tactical: A Software/Hardware Approach to Exploiting Value and Bit Sparsity in Neural Networks
* MAC演算ユニットにスパースな演算データを無駄を省いて供給したい
* → オンデマンドであいてる演算器にデータをつっこめるようにする
* 演算器へのデータパスにMUXをいれてデータ供給を制御している,のかな.
* うまくつくれれば便利そう
!Machine Learning II
:: TANGRAM: Optimized Coarse-Grained Dataflow for Scalable NN Accelerators
* scaling NN perf.
** use more PEs & more on-chip buffers
*** monolithic engine <- low resource utilization, long array busses, far from SRAM
*** -> tiled architecture - mostly local data transfers, easy to scale up/down
***- <- dataflow scheduling ?
* inter-layer parallel
** buffer sharing dataflow - タイルでデータを共有 → 最初に分割して配って,あとで交換する
* inter-layer pipeline
** pipeline multiple layers, pros: save DRAM B/W, cons: utilize resources less efficiently(long delay, large SRAM)
** -> fine-grained data forwarding
*** forward each subset of data to the next layer as soon as ready
*** require matched access patterns between adjacent layers
*** データフローツールでパイプラインスケジューリングする
:: Packing Sparse Convolutional Neural Networks for Efficient Systolic Array Implementations: Column Combining Under Joint Optimization
* スパース行列をデンスな行列に変換する話
* zero weights in systolic arrays are wasteful
** -> column combining. 9タイルを3タイルに.
*** 保存された重さとの積の方だけ選択して計算する.
* ref. Full-stack Optimization for Accelerating CNNs with FPGA Validation, ICS 2019 ???
:: Split-CNN: Splitting Window-based Operations in Convolutional Neural Networks for Memory System Optimization
* DL faces a memory problem, HBM meomry is expensive
** Accelerator(eg. GPU): 16GB/32GB/..., Host: 512GB/1TB/...
* opportunities enabled by NV-LINK
** ref. vDNN(Rhu, MICRO 49)
* memory profile of training DNN
* Split-CNN
** accuracy drops slowly as we splite deeper and into more patches
** batch毎にsplitの感じをかえる
* HMMS is a static memory planner that detemines the timing of memory allocation, deallocation, prefetching and offloading
学習時のメモリボトルネックを解決するために,データを分割するSplit-CNNと,メモリ管理/プリフェッチの管理システムHMMSを提案.IBM Power System S822LCで評価.
!Storage
:: LightStore: Software-defined Network-attached Key-value Drives
組み込みクラスのプロセッサと数TBのNAND FLASHを使ったNW接続なKVS LightStore を提案.FTLはHW上に実装.Xeonサーバ上のRocksDBと比べて,Random Setの速度はXenサーバを凌駕,ノード数に対してスケール,省電力.
* one ssd per network port, KV interface,
* optimization
** system optimization
*** mmemcopy, thread
* LSM-tree spec. opt
** decoupled keys from KV paris, bloom filter
* FTL in HW
:: SOML Read: Rethinking the read operation granularity of 3D NAND SSDs
3D NANDで密度あがったので同じ容量のSSDはチップ数減って,チップ間並列性がへって読み出しが遅くなった.なので,Partial-page読み出しを1つのread命令にパックできるようにSWとHWを工夫した,と.
* fewer number of NAND chips -> lower multi-chip parallelism
* ← sigle-operation-multiple-location
** Partial-page readを1 READ命令にまぜる
:: FlatFlash: Exploiting the Byte-Accessibility of SSDs within A Unified Memory-Storage Hierarchy
SSD(PCIe接続なフラッシュストレージ)にDRAMと同じようにバイトアクセスできるようにするために
SSD->DRAMへのpromotionメカニズムを実装した,と.
* FlatFlash, byte addressable interface
** avoid paging
** reduce i/o traffic
** reduces dram latency
* dram in ssd + pcie mmio + opencapi
* ref. FlashMap, ISCA'15 - unifying the memory and storage <- FlatFlashは1.6倍速い.
* DRAM への promoteがおそい -> background実行したい -> consistency問題
!Quantum Computing
:: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers
* ref. qubitのswapを最適化する問題
* not all qubis are created equal
** exploit variation in error rates to improve reliability
*** assign more operations on reliable qubits/link
*** <- SWAPカウントじゃなくて
:: Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices
* qubit connection limitation
* mapping with SWAP
** heuristic - Zulehner et al., DATE'18, Siraichi et al., CGO'18
* reduce search complexity
** swap-based search
*** Prev.: mapping-based search, high complexity - O(exp(N))
*** Proposed: search a SWAP sequence - only consider high-priority qubits - O(N^2.5)
** reverse traversal for init. mapping
*** Prev.: random initial mapping
*** Proposed: Inspired by the reversibility
** control the parallelism
:: Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers
* Q algorithmと実機にはギャップがある
* NISQ Resource constraints
** Low qubits: 5-72
** high gate error rates: 1-10%
** Qubts hold state for 100us
* cur.
** compile onece per input: more optimization opportunities
** reduce program execution time to avoid decoherence
** communication/SWAP optimization
** Used in IBM, Rigetti, Google compilers
** -> NISQ system have ~10x spatial and temporal noise variation!
* proposed: noise-adaptive compilation
* noise variation impacts successes rate
** noise data is measured twice daly by IBM - https://quantumexperience.ng.bluemix.net/qx/devices
* #1: choose a good initial mapping
* #2: coherene-aware sheduling
** influences mapping: choose qubits with good coherence time
* #3: reduce SWAPs, use low-error rate routes
* -> implement as a constrained optimization
* Scaffold Program -> LLVM IR ScaffCC -> Optization using z3 SMT Solver* -> OpenQASM
* *にノイズデータいれる
https://github.com/prakashmurali/TriQ
:: Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers
ロジカルな量子操作と物理的な操作の乖離が大きい.効率的な物理制御をするために1-, 2-qubit操作じゃなくて,最大10qubitsまで同時に操作するようなユニットにまとめるよ.という話なのかな?
* layered approach to quantum compilation
* GRAPE - GRadient Ascent Pulse Engineering
* how to maximally utilize optimal control? - physical gate decomposition, phisical gate optimization