トップ 一覧 Farm 検索 ヘルプ RSS ログイン

Diary/2018-11-20の変更点

  • 追加された行はこのように表示されます。
  • 削除された行はこのように表示されます。
!NCS2
なぜか,「お昼休みはうきうきハッキング♪あっちもこっちも〜」というフレーズが

頭に浮んでしまって,あのメロディでぐるぐるループ.





ハッキングというわけでもないけど,

[Intel Neural Computing Stick 2|https://ai.intel.com/intel-neural-compute-stick-2-smarter-faster-plug-and-play-ai-at-the-edge/]のデモを試してみた.



用意されているsqueezenet1.1のデモでは,

Core i5-4300U 1.9GHzなノートPCで,MKLDNNPluginなOpenVINOで78.20FPS

なのに対して,

NCS2なmyriadPluginだと106.61FPS

と 1.36倍高速化されるみたい.

ただし,ソフトウェア版はFP32で,NCS2はFP16.





実行ログは次の通り.



 ###################################################

 

 Run Inference Engine classification sample

 

 Run ./classification_sample -d MYRIAD -i /home/miyo/intel/computer_vision_sdk/deployment_tools/demo/../demo/car.png -m /home/miyo/openvino_models/ir/squeezenet1.1/FP16/squeezenet1.1.xml

 

 [ INFO ] InferenceEngine:

         API version ............ 1.4

         Build .................. 17328

 [ INFO ] Parsing input parameters

 [ INFO ] Files were added: 1

 [ INFO ]     /home/miyo/intel/computer_vision_sdk/deployment_tools/demo/../demo/car.png

 [ INFO ] Loading plugin

 

         API version ............ 1.4

         Build .................. 17328

         Description ....... myriadPlugin

 [ INFO ] Loading network files:

         /home/miyo/openvino_models/ir/squeezenet1.1/FP16/squeezenet1.1.xml

         /home/miyo/openvino_models/ir/squeezenet1.1/FP16/squeezenet1.1.bin

 [ INFO ] Preparing input blobs

 [ WARNING ] Image is resized from (787, 259) to (227, 227)

 [ INFO ] Batch size is 1

 [ INFO ] Preparing output blobs

 [ INFO ] Loading model to the plugin

 [ INFO ] Starting inference (1 iterations)

 [ INFO ] Processing output blobs

 

 Top 10 results:

 

 Image /home/miyo/intel/computer_vision_sdk/deployment_tools/demo/../demo/car.png

 

 817 0.8295898 label sports car, sport car

 511 0.0961304 label convertible

 479 0.0439453 label car wheel

 751 0.0101318 label racer, race car, racing car

 436 0.0074234 label beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon

 656 0.0042267 label minivan

 586 0.0029869 label half track

 717 0.0018148 label pickup, pickup truck

 864 0.0013924 label tow truck, tow car, wrecker

 581 0.0006595 label grille, radiator grille

 

 

 total inference time: 9.3803108

 Average running time of one iteration: 9.3803108 ms

 

 Throughput: 106.6062761 FPS

 

 [ INFO ] Execution successful

 

 

 ###################################################

 

 Demo completed successfully.