Axonerve/AWS-F1

<u>AWS-F1 ふたたび</u>を参考に.

S3 バケットの用意

- ・ S3 バケットを作成. 名前は aws-f1-axonerve-kvs
- ・フォルダを作成.名前は axonerve-kvs-20190503

F1 インスタンスの用意

- ・ c4.4xlarge で作成 . \$0.796/ 時間
- ・ストレージはルートを 100GB 程度あると安心.二つ目のストレージは不要.
- ・キーペアは既存のキーペアを選択(以前つくった aws-f1-test-key)

F1 インスタンス起動後の設定

- ・ aws configure を 忘れない
- ・ /home/centos の下で git clone <u>https://github.com/aws/aws-fpga.git</u> \$AWS_FPGA_REPO_DIR を する
- ・/home/centos の下で git clone <u>https://github.com/miyo/axonerve_util.git</u>をする
- ・AXONERVE_all.vp をアップロードする
 - ・ scp -i pem ファイル AXONERVE_all.vp centos@AWS インスタンスの IP

作業ディレクトリに移動して環境設定

- cd \$AWS_FPGA_REPO_DIR
- source sdaccel_setup.sh

SDx プロジェクトを作成

- cd ~/
- sdx -workspace build
- ・ "Create a Xilinx(R) SDx(TM) Application project をクリック
- ・プロジェクト名を axonerve_kvs としてプロジェクト作成
- ・Platform は, aws-vu9p-f1...を選択
 - ・候補がでないときは、Platform で Add Custom Platform... から、 /home/centos/src/project_data/aws-fpga/SDAccel/aws_platform を追加
- ・Empty Application を選択

RTL カーネルの用意

- ・ Kernel Wizard で雛形を作成
 - ・メニューの Xilinx から RTL Kernel Wizard を選択
 - General Settings
 - ・ kernel name を axonerve_kvs_rtl, kernel vendor を wasalabo と設定して Next.
 - クロック数を2, Has Reset を1に設定
 - Scalars
 - ・数は1のまま. Argument name を data_num に変更して, Next.

- Global Memory
 - ・そのまま Next
- ・ファイルの置換と追加
 - ・取り除く: axonerve_kvs_rtl_example.sv , axonerve_kvs_rtl_example_vadd.sv , axonerve_kvs_rtl_ooc.xdc と axonerve_kvs_rtl_user.xdc
 - ・追加 (1): /home/centos/axonerve_util/kvs/sdaccel/src/hdl の下の axonerve_kvs_rtl_example_sv , axonerve_kvs_rtl_example_vadd.sv , user_logic.sv
 - ・追加 (2): /home/centos/axonerve_util/kvs/hdl/sources の下の axonerve_kvs_kernel.sv
 - ・追加 (3): /home/centos/axonerve_util/kvs/sdaccel/src/xilinx-ip/aws-f1-vu9p の下の xci ファ イル.これはプロジェクトにコピー
 - ・追加 (4): アップロードした Axonerve_all.vp
 - ・追加 (5): /home/centos/axonerve_util/kvs/sdaccel/src/xdc/vu9p の下の
 - axonerve_kvs_rtl_ooc.xdc & axonerve_kvs_rtl_user.xdc
 - ・Soureces ペインの Libraries タブに切り替えると作業しやすい
 - ・- Design Sources SystemVerilog xil_defaultlibのaxonerve_kvs_rtl_example.svと axonerve_kvs_rtl_example_vadd.sv を取り除く
 - ・- Design Sources で右クリックして,コンテクステメニューから Add Sources を選択. "Add or create design sources" を選択して Next
 - ・ /home/centos/axonerve_util/kvs/sdaccel/src/hdl の下の axonerve_kvs_rtl_example_sv , axonerve_kvs_rtl_example_vadd.sv , user_logic.sv を追加
 - ・- /home/centos/axonerve_util/kvs/hdl/sources の下の axonerve_kvs_kernel.sv を追加
 - /home/centos/axonerve_util/kvs/sdaccel/src/xilinx-ip/aws-f1-vu9pの下のxciファイルを追加(これはプロジェクトにコピーする Copy sources into project へのチェックを忘れない)
 - ・- アップロードした Axonerve_all.vp を 追加
 - ・- Constraints constrs_1のaxonerve_kvs_rtl_ooc.xdcとaxonerve_kvs_rtl_user.xdcを 取り除く
 - ・- "Add or create constraints" を選択して Next
 - ・- /home/centos/axonerve_util/kvs/sdaccel/src/xdc/vu9pの下の axonerve_kvs_rtl_ooc.xdc と axonerve_kvs_rtl_user.xdc を追加
- ・Generate RTL Kernel を実行
 - ・ source-only kernel を 選択

SDx でシステム全体のビルド

- ・ファイルの削除と追加
 - ・ host_example.cpp を削除 . axonerve_kvs.cpp , axonerve_kvs.hpp , host.cpp , xcl2.cpp , xcl2.hpp を追加
 - ・Project Explorer の src sdx_rtl_kernel axonerve_kvs_rtl の下の host_example.cpp (2018.2 以前のバージョンなら main.c だった) は削除
 - ・Project Explorer の トップ の axonerve_kvs で右クリック.コンテクストメニューから Import Sources... を選択
 - ・Browse...で/home/centos/axonerve_util/kvs/sdaccel/srcを選択
 - ・ axonerve_kvs.cpp, axonerve_kvs.hpp, host.cpp, xcl2.cpp, xcl2.hpp を選択して Finish
- ・ターゲットを System に変更
 - ・右ペイン,右上の Active build configuration で System を選択
- ・コンパイルオプションに --kernel_frequncy "0:60|1:120" を追加.
 - Project Explorer の トップの axonerve_kvs で右クリック.コンテクストメニューから, C/C++ Build Settings を選択.
 - ・ 左ペインの Settings をクリック
 - ・ Configuration タブを System にセット(この手順ならセットされているはず)
 - ・ Tool Settings タブを開く
 - ・SDx XOCC Kernel Compiler Miscellaneos で --kernel_frequency "0:60|1:120" を追加
 - ・ SDx XOCC Kernel Linker Miscellaneos で --kernel_frequency "0:60|1:120" を追加
 - ・ Apply and Close で閉じる
- ・Hardware Functions(ハードウェア側の関数) として axonerve_kvs_rtl を設定

- ・右ペインの Hardware Functions の右にある Add Hardware Function... ボタン(稲妻みたいなアイコン)をクリック
- ・axonerve_kvs_rtl を選択して OK
- ・メニューの Project Build Project でビルド
 ・ツールバーのハンマーみたいなアイコンをクリックしてもいい

AFI イメージを作る

- ・ cd /home/centos/build/axonerve_kvs/System で移動して binary_container_1.xclbin があるのを 確認
- ・ binary_container_1 フォルダが邪魔になるので mv binary_container_1 binary_container_1.o で リネーム
- ・AFIイメージ作る で binary_container_1.awsxclbin ができる

\$SDACCEL_DIR/tools/create_sdaccel_afi.sh ¥

-xclbin=<xclbin file name>.xclbin ¥

- -s3_bucket=<bucket-name> ¥
- -s3_dcp_key=<dcp-folder-name> ¥ -s3_logs_key=<logs-folder-name>
 - ・ 今回の例だと

\$SDACCEL_DIR/tools/create_sdaccel_afi.sh ¥

- -xclbin=binary_container_1.xclbin ¥
- -s3_bucket=aws-f1-axonerve-kvs ¥
- -s3_dcp_key=axonerve-kvs-20190503 ¥ -s3_logs_key=axonerve-kvs-20190503
- ・*_afi_id.txtを開いて FpgaImageId を確認
- ・AFI イメージの作成をまつ(コマンドを実行して State が available になるのを待つ)

aws ec2 describe-fpga-images --fpga-image-ids 確認した FpgaImageId

- ・ axonerve_kvs.exe と binary_container_1.awsxclbin を手元にコピーする
- ・オプション:ビルドディレクトリ (/home/centos/build 以下)をダウンロード ・たとえば,とか

ssh -i pem ファイル centos@ リモート IP tar zcpvf - build | tar zxpvf -

AWS-F1 で実行

- ・AWS-F1 インスタンスを作成
 - ・ AMI で FPGA を検索.今度は f1.2xlarge で作成.
 - ・ 起動したら aws configure を 実行
 - ・ /home/centos の下で git clone <u>https://github.com/aws/aws-fpga.git</u> $AWS_FPGA_REPO_DIR$
 - cd \$AWS_FPGA_REPO_DIR; source sdaccel_setup.sh
- ・ axonerve_kvs.exe と binary_container_1.awsxclbin をアップロードする
- ・実行する
 - sudo -s
 - source \$AWS_FPGA_REPO_DIR/sdaccel_runtime_setup.sh
 - ./axonerve_kvs.exe binary_container_1.awsxclbin