m CellvM

gogbbooboobbooboobbooovMoono
OJavaThreed DD OOOOOODO

gogbboobosgbooogsuononoooooo

0O SPEOO CorevM OO0
O PPE O OO intervention O assistance 0 00 O Javal bytecode d O O

0000000000000 0000d ShelVM(PPE)DO OO OOO (=> cooperative
interpretation; co-interpretation 0 00 O )

O new objects(array 0 0 )OO O opcoded O ShellvM OO OO OO
00000 JavahegpOOOOOODOOOODOO

O nativemethod O O 0O ShdlvM OO OO0
Oooooooood
O JavahegpO O OOOOOODODO (array copying 00 )

0 JavmvM O 0O 0O
O direct threaded interpreter
000000000000 00oo00oDoooogoooo
0 machine-level D 000 /opcodeO O OO OO
O opcode rewriting: to store resolved information in the operand of an instruction(Sec 3.2)

U SPED LS ODOODOOOODOoOoO
UbDMAODOODOODOODOODOOOODOO000O0

00 CoevMUIOUOOOOOOOOOOODOOOOOODOOOOO
0000000000000 Ostacktoppointerd 00000 0OOO0OO0O
O method O O OO JavaframeO O
O methodcodeO OO OOOO

m Tech talk;: Gauche Scheme
http://jp.youtube.com/watch?v=WEBOdWyGE3E 0 0 0 O O

goboobooopoobooboobboobooboboobobooboo
schemeO O OOODOOODOOOOOOODO

m Escape analysis for object-oriented languages: application to Java

Escape analysis[27, 14, 5] isa static analysis that determines

whether the lifetime of data exceeds its static scope.The main

originality of our escape analysisisthat it determines precisely the

effect of assignments, which is necessary to apply it to object

oriented languages with promising results, whereas previous work [27,

14, 5] applied it to functional languages and were very imprecise on
assignments. Our implementation analyses the full Java(TM) Language.We
have applied our analysis to stack allocation and synchronization


http://jp.youtube.com/watch?v=WEBOdWyGE3E

elimination. We manage to stack allocate 13% to 95% of data, eliminate
more than 20% of synchronizations on most programs (94% and 99% on two
examples) and get up to 44% speedup (21% on average). Our detailed
experimental study on large programs shows that the improvement comes
from the decrease of the garbage collection and allocation times than

from improvements on data locality [7], contrary to what happened for

ML [5].

@article{320387,

author = {Bruno Blanchet},

title = {Escape analysis for object-oriented languages: application to Java},
journal = {SIGPLAN Not.},

volume = {34},

number = {10},

year = {1999},

issn = {0362-1340},

pages = {20--34},

dor = {http://doi.acm.org/10.1145/320385.320387},
publisher = {ACM},

address = {New York, NY, USA},

}

m Escape analysis for Java

This paper presents a simple and efficient data flow algorithm for
escape analysis of objects in Java programs to determine (i) if an

object can be alocated on the stack; (ii) if an object is accessed

only by asingle thread during its lifetime, so that synchronization
operations on that object can be removed. We introduce a new program
abstraction for escape analysis, the connection graph, that is used to
establish reachability relationships between objects and object
references. We show that the connection graph can be summarized for
each method such that the same summary information may be used
effectively in different calling contexts. We present an

interprocedural algorithm that uses the above property to efficiently
compute the connection graph and identify the non-escaping objects for
methods and threads. The experimental results, from a prototype
implementation of our framework in the IBM High Performance Compiler
for Java, are very promising. The percentage of objects that may be
allocated on the stack exceeds 70% of al dynamically created objects
in three out of the ten benchmarks (with amedian of 19%), 11% to 92%
of al lock operations are eliminated in those ten programs (with a
median of 51%), and the overall execution time reduction ranges from
2% to 23% (with amedian of 7%) on a 333 MHz PowerPC workstation with
128 MB memory.

@article{320386,
author = {Jong-Deok Choi and Manish Gupta and Mauricio Serrano and Vugranam C. Sreedhar and Sam
Midkiff},

title = {Escape analysis for Java},
journal = {SIGPLAN Not.},
volume = {34},



number = {10},

year = {1999},

issn = {0362-1340},

pages = {1--19},

dor = {http://doi.acm.org/10.1145/320385.320386},
publisher = {ACM},

iddress = {New York, NY, USA},



	
	
	CellVM
	Tech talk: Gauche Scheme
	Escape analysis for object-oriented languages: application to Java
	Escape analysis for Java



